УДК (338.45:669):658

Y.V. Selyavskiy

DYNAMIC GROWING PYRAMIDAL NETWORKS FOR ASSESSING INNOVATIVE PROJECTS FEASIBILITY IN METALLURGY

Yuri Selyavskiy – postgraduate student, the Department of Management and IT in Economy, Smolensk Branch of National Research University (Moscow Power Engineering Institute), Smolensk; **e-mail: baguzova_ov@mail.ru**.

The article analyzes the current state of domestic metallurgy and justifies the need for implementation of innovative programmes at the metallurgical enterprises. This paper proposes a new approach to assessing the metallurgical enterprise opportunities in terms of implementation of complex innovation project based on a short-term forecast. This approach provides for implementation of growing pyramidal network for conducting comprehensive analysis of the innovative potential of all innovation project participants.

Keywords: innovative potential; growing pyramidal network; metallurgy; technological network; structural links between elements; diagnostics; nominal scale.

Ю.В. Селявский

ДИНАМИЧЕСКИЕ РАСТУЩИЕ ПИРАМИДАЛЬНЫЕ СЕТИ ДЛЯ ОЦЕНКИ ВОЗМОЖНОСТЕЙ РЕАЛИЗАЦИИ ИННОВАЦИОННЫХ ПРОЕКТОВ В МЕТАЛЛУРГИИ

Юрий Валерьевич Селявский – аспирант кафедры менеджмента и информационных технологий в экономике филиала Национального исследовательского университета «МЭИ» в г. Смоленске, г. Смоленске, е-mail: baguzova ov@mail.ru.

В статье проанализировано текущее состояние отечественной металлургии, обоснована необходимость реализации металлургическими предприятиями инновационных программ. В работе предложен новый подход к оценке возможностей металлургических предприятий реализовывать сложные инновационные проекты на основе краткосрочного прогноза. Данный подход предлагает использование аппарата растущих пирамидальных сетей для комплексного анализа инновационного потенциала всех участников инновационного проекта.

Ключевые слова: инновационный потенциал; растущие пирамидальные сети; металлургия; технологическая цепь; структурные связи между элементами; диагностика; номинальная шкала.

Известно, что экспорт российской металлургии в значительной степени носит сырьевой характер. Данная проблема требует комплексного внедрения инноваций на всех этапах технологической цепи металлургического производства. В этой связи возникает задача выбора участников инновационных процессов по созданию высокотехнологической металлопродук-

ции, который должен основываться на анализе собственных материально-технических и финансовых ресурсов предприятий, накопленном им инновационном опыте и имеющемся кадровом потенциале [5; 7]. В табл. 1 предложены показатели оценки внутреннего состояния предприятия, определяющие его инновационный потенциал. Важную роль при реализации

ЭКОНОМИЧЕСКИЕ НАУКИ И УПРАВЛЕНИЕ

инновационных проектов играют возможности внешней среды, которые определяют условиях функционирования участников инновационных процессов [4; 6]. Все факторы внешней среды можно разбить на две группы: общие и специфические.

В табл. 2 предложены показатели оценки общего инновационного потенциала внешней среды, которые оказывают одинаковое влияние на всех участников технологической цепи производства металлопродукции.

В табл. 3 приведены показатели оценки специфического инновационного потенциала внешней среды, которые индивидуальны для различных участников технологической цепи производства металлопродукции.

Ввиду использования количественных и качественных показателей для оценки инновационного потенциала предприятия и внешней среды целесообразно применять растущие пирамидальные сети (РПС) [1; 2]. В РПС в качестве рецепторов используются характеристики рассматриваемого элемента инновационного потенциала предприятия или внешней среды, оцениваемые предложенными в табл. 1-3 показателями. Построение РПС заключается в формировании пирамид, характеризующих структурные связи между элементами в соответствии с тремя правилами добавления новых вершин, представленными на рис. 1.

Пусть $V = \{r_1, r_2, r_3, s_1\}$ – множество

Таблица 1

Инновационный потенциал предприятия

Интеллектуальный потенциал

- рентабельность персонала;
- показатели текучести и абсентеизма;
- квалификационная структура;
- возрастная структура;
- производительность труда;
- доля работников, занятых в НИОКР;
- удельный вес затрат на стимулирование рационализаторской деятельности;
- доля затрат на обучение персонала;
- доля затрат на организационноуправленческий персонал.

- доля затрат на НИОКР и приобретение технологий в производственных расходах;
- удельный вес затрат на организационно-управленческие инновации;
- рентабельность инвестиций;
- рентабельность инновационной продукции;
- коэффициент финансовой устойчивости;
- коэффициент автономии;
- наукоемкость продукции;
- размер собственных средств;
- затраты на охрану труда и промышленную безопасность;
- показатели эффективности использования заемного капитала.

Научно-технологический потенциал

- уровень технологий;
- удельный вес инновационной продукции;
- доля успешных инновационных проектов;
- объем патентного фонда;
- число приобретаемых лицензий;
- средняя продолжительность разработки инновации;
- металлоемкость продукции;
- коэффициент обновления научнотехнической информации;
- показатели информационной обеспеченности

Материально-технический потенциал

- фондоотдача и фондовооруженность НИОКР;
- техническая вооруженность НИОКР;
- коэффициент загрузки оборудования, используемого для НИОКР;
- коэффициенты годности и износа оборудования для НИОКР;
- коэффициент обновления и выбытия;
- автоматизация труда;
- информатизация труда;
- фондорентабельность;
- удельный вес оборудования НИОКР;
- ровень амортизационных затрат;
- удельный вес затрат на обновление материально-технической базы.

ЖУРНАЛ ПРАВОВЫХ И ЭКОНОМИЧЕСКИХ ИССЛЕДОВАНИЙ

Таблииа 2

Общий инновационный потенциал

Макроэкономический потенциал

- темпы экономического роста экономики;
- курс национальной валюты;
- цены на металлы и энергоносители;
- доступ к финансовым ресурсам;
- уровень инфляции в экономике;
- ключевая ставка Банка России.

Социальный потенциал

- уровень занятости и безработицы;
- численность трудоспособного населения.

Экологический потенциал

- обеспеченность минеральными ресурсами (железом и цветными металлами);
- требования национальных и международных стандартов;
- характеристика; гидрометеорологических, геологических, топографических условий.

Внешнеполитический потенциал

- торговые санкции;
- финансовые санкции.

Таблица 3

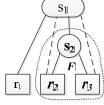
Специфический инновационный потенциал внешней среды

Рыночный потенциал

- объем и емкость рынка
- уровень конкуренции;
- число товаров-субститутов;
- структура потребителей;
- эластичность спроса и предложения;
- показатели рентабельности.

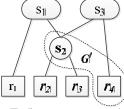
Ресурсный потенциал

- развитость в регионе энергетической структуры;
- близость месторождений металлов, топливно-энергетических ресурсов;
- близость поставщиков.

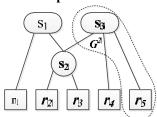

Отраслевой потенциал

- темпы роста отрасли;
- инвестиционная политика;
- скорость обновления продукции;
- налоговая нагрузка;
- административные барьеры;
- протекционистская политика.

Инфраструктурный потенциал


- развитость научно-образовательных услуг;
- наличие финансово-кредитных учреждений;
- развитость консалтинговых услуг;
- развитость информационной инфраструктуры;
- развитость транспортной инфраструктуры.

Правило 1


Добавление новой промежуточной вершины

Правило 2

Добавление новой вершины-выхода сети

Правило 3

Добавление нового рецептора

Рис. 1. Правила построения РПС

вершин, формирующих пирамиду вершины s_I ; $Q = \{(r_1, s_1), (r_2, s_1), (r_3, s_1)\}$ — множество связей между вершинами пирамиды s_I ; F — подмножество возбужденных вершин нулевого субмножества вершины s_I , содержащее более одного элемента; G

– множество возбужденных вершин сети, не имеющих других возбужденных вершин в своих супермножествах, которое содержит более одного элемента. Тогда указанные на рис. 1 правила можно представить в следующем виде:

ЭКОНОМИЧЕСКИЕ НАУКИ И УПРАВЛЕНИЕ

$$\begin{split} &\Pi 1: s_1 \notin F, \big| F \big| > 1 \longrightarrow V = \{r_{i=1..3}, s_{j=1..2}\}, Q = \{(r_1, s_1), (r_2, s_2), (r_3, s_2), (s_2, s_1)\}. \\ &\Pi 2: \exists s_3, G^1 = \{r_4, s_2\} \longrightarrow V = \{r_{i=1..4}, s_{j=1..3}\}, Q = \{(r_1, s_1), (r_2, s_2), (r_3, s_2), (s_2, s_1), (r_4, s_3), (s_2, s_3)\}. \\ &\Pi 3: G^2 = \{r_5, s_3\} \longrightarrow V = \{r_{i=1..5}, s_{j=1..3}\}, Q = \{(r_1, s_1), (r_2, s_2), (r_3, s_2), (s_2, s_1), (r_4, s_3), (s_2, s_3)\}. \end{split}$$

Обучение РПС заключается в индуктивном формировании понятий, представляющих собой признаковую модель, положенную в основу диагностики состояния исследуемого элемента. Алгоритм обучения заключается в определении контрольных вершин, которое основывается на таких характеристиках, как число объектов объема некоторого понятия, в пирамиды которых входит рассматриваемая вершина и число рецепторов в пирамиде, соответствующей этой вершине. Пусть пирамида вершины А содержит Р рецепторов и Q ассоциативных вершин, т.е. $V^A = \{v_{l=1..(P+O)}\}$. Каждой вершине v_l в пирамиде вершины А соответствует объем $b_{l=1..(P+Q)}$ и число входящих в ее субмножество рецепторов $p^l(\sum p^l = P)$, т.е. вершина v_l определяется кортежем (b_l, p^l) (для рецептора $p^l=1$).Тогда множество контрольных вершин \tilde{S}^A для пирамиды вершины А формируется в соответствии со следующими правилами:

$$\Pi 4: v^* = \arg\max_{p'} \left(\max_{b_{i=1,(P+Q)}} \left(V^A \right) \right) \to v^* \in \tilde{S}^A.$$

$$\Pi 5: \tilde{S}^B \cap V^A = \emptyset, \tilde{S}_i^B \not\subset \tilde{S}^A \to v^* = \arg\max_{p_i} \left(\max_{b \in S} \left(V(A) \right) \right) \to v^* \in \tilde{S}^A.$$

Для определения реализуемости конкретного этапа технологического процесса производства металлургической продукции целесообразно проводить согласование составляющих инновационных потенциалов всех участников проекта, задействованных на данном этапе, с учетом временного фактора [3; 8]. На рис. 2 предложена структура РПС, которая может применяться для диагностики комплексинновационного потенциала нескольких предприятий-участников инновационного проекта. Процесс диагностики начинается с определения значений показателей оценки составляющих инновационного потенциала непосредственно для каждого предприятия-участника проекта, которому впоследствии ставится в соответствие одно из трех значений, опреде-

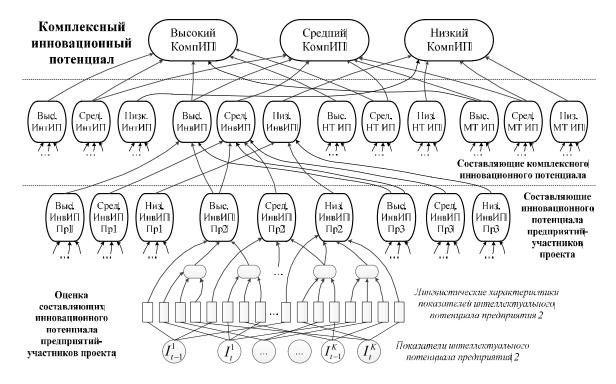


Рис. 2. Структура РПС

ЖУРНАЛ ПРАВОВЫХ И ЭКОНОМИЧЕСКИХ ИССЛЕДОВАНИЙ

ляемых на номинальной шкале (высокий / средний / низкий). Для каждой составляющей инновационного потенциала предприятия формируется ее качественная оценка, которая затем комплексируется с аналогичными оценками других предприятий-участников проекта. Завершающим этапом является агрегирование оценок всех составляющих комплексного инновационного потенциала.

Применение описанного подхода позволит повысить обоснованность процедур выбора участников инновационных проектов в металлургии.

ЛИТЕРАТУРА

- 1. Бояринов Ю.Г., Борисов В.В., Мищенко В.И., Дли М.И. Метод построения нечеткой полумарковской модели функционирования сложной системы // Программные продукты и системы. 2010. № 3. С. 26.
- 2. Булыгина О.В., Селявский Ю.В., Офицеров А.В. Диагностика реализации инновационных проектов с использованием нечетко-сетевых иерархических моделей // Путеводитель предпринимателя. 2015. № 27. С. 96–104.
- 3. *Гимаров В.А.*, *Дли М.И.*, *Круглов В.В.* Задачи распознавания нестационар-

- ных образов // Известия Российской академии наук. Теория и системы управления. 2004. № 3. С. 92–96.
- 4. Дли М.И., Какатунова Т.В. Нечеткие когнитивные модели региональных инновационных систем // Интеграл. 2011. \mathbb{N}_2 2. С. 16–18.
- 5. Дли М.И., Какатунова Т.В. Общая процедура взаимодействия элементов инновационной среды региона // Журнал правовых и экономических исследований. Journal of Legal and Economic Studies. 2009. № 3. С. 60–63.
- 6. Дли М.И., Какатунова Т.В. Процедура распространения результатов инновационной деятельности в регионах // Журнал правовых и экономических исследований. Journal of Legal and Economic Studies. 2010. № 1. С. 5–9.
- 7. Какатунова Т.В., Мешалкин В.П. Выбор инновационной стратегии развития регионального промышленного комплекса // Транспортное дело России. 2011. № 3. С. 93–95.
- 8. Мешалкин В.П., Белозерский А.Ю., Дли М.И. Методика построения комплексной математической модели управления рисками предприятия металлургической промышленности // Прикладная информатика. 2011. № 3 (33). С. 10–12.